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Interfacial fluctuations near the critical filling transition

A. Bednorz and M. Napio´rkowski
Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, 00-681 Warszawa, Hoz˙a 69, Poland

~Received 14 June 2000; published 26 February 2001!

We advance a method to describe the short-distance fluctuations of an interface spanning a wedge-shaped
substrate near the critical filling transition. Two different length scales determined by the average distance of
the interface from the substrate at the wedge center can be identified. On one length scale, the one-dimensional
approximation of A. O. Parry, C. Rascon, and A. J. Wood@Phys. Rev. Lett.85, 345~2000!#, which allows one
to determine the interfacial critical exponents, is extracted from the full description. On the other scale, the
short-distance fluctuations are analyzed by mean-field theory.
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I. INTRODUCTION

The analysis of uniform physical systems usually involv
some reduction in the description of the state of the syst
Likewise for inhomogeneous systems consisting of two
existing bulk phases separated by an interface fluctuatin
the presence of a substrate. Certain properties of such
tems, e.g., those related to adsorption phenomena, ca
described conveniently with the help of a single mesosco
variable, namely, the distance of the interface from the s
strate.

In this paper we consider such a system. The substrate
the form of an infinite wedge extending along they direction
with the opening angle 2w: see Fig. 1. The quasibulk phas
adsorbed on the substrate is denotedb while the phase far
above the substrate is thea phase. The surface of the su
strate is specified byz5uxucotw while l (x,y) describes the
distance of thea-b interface from the substrate measur
parallel to thez axis. It was pointed out recently@1–7# that
this system may undergo a critical transition in which t
distance of the central part of the interface~above the edge o
the wedge! becomes indefinitely large while the asympto
parts of the interface corresponding touxu→` remain close
to the substrate. This interfacial transition is called the filli
transition to distinguish it from the wetting transition th
may take place on planar substrates@8,9#. Thermodynami-
cally, the filling transition point is located at bulka-b coex-
istence and the filling temperature~which depends on the
wedge opening anglew! is denoted byTw with Tw,Tw ,
whereTw is the wetting temperature on the planar substra

In their recent paper Parry, Rascon, and Wood@10# used a
transfer-matrix method to evaluate—among other feature
the values of the critical indices associated with the inte
cial behavior near the filling transition. For this purpose
further step in the reduction of the description was ma
The two-dimensional interfacel (x,y) was replaced by the
one-dimensional midpoint linel (y)[l (0,y) ~see Fig. 1! for
which an appropriate Hamiltonian was proposed.

If, however, one is interested in the full two-dimension
structure of the fluctuating interface near the critical fillin
transition, i.e., also in the short-distance behavior that is
included in the reduced description then—at least
principle—one should go beyond a mean-field analysis.

In this paper we advance a method to describe the t
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dimensional interface close to the filling transition in th
system with short-ranged forces@6#. We expect that
geometry-dependent effects will be important at short d
tances. Since the midpoint height does not fluctuate
much on the short length scale, the idea is to fix this heigh
some arbitrarily chosen point and to assume a mean-fi
profile of the interface in the vicinity of this chosen poi
~along thex direction!. We use a mean-field approximatio
to describe the ‘‘relative’’ fluctuations around the fixe
point. The two-point height distribution function for neigh
boring points consists of two parts: the one-point distribut
corresponding to one of the points~or their average height!
and the conditional probability distribution in the form of
Gaussian with a position-dependent dispersion. This dis
sion does not diverge at the filling transition and may th
turn out to be useful when geometry-dependent observa
are considered. The mean-field description then become
gitimate because by fixing the position of the interface a
looking at the conditional distribution, one forces the loc
fluctuations to be small and so the system is locally outs
the critical region.

II. MEAN-FIELD DESCRIPTION

For the interfacial Hamiltonian in the case of a wide
open wedge (cotw!1) we adopt the standard form@6,10#

H@ l #5E dxE dy$S@¹~ l 1luxu!#2/21v~ l !2v~ l `!%

FIG. 1. The wedge geometry and the fluctuatinga-b interface.
©2001 The American Physical Society02-1
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5E dxE dy@S~¹l !2/21v~ l !2v~ l `!#

22SlE dy@ l ~0,y!2l `#, ~2.1!

wherel (x,y) ~Fig. 1! denotes the thickness of the adsorb
b-like layer measured in the vertical direction whileS is the
a-b interfacial tension. The interfacial pinning potenti
v~l ! is taken to be that appropriate to critical wetting in t
planar case (w5p/2). For short-range forces, as consider
in this paper, it has the form@6–11#

v~ l !52Wt exp~2l /j!1U exp~22l /j!, ~2.2!

wherej is the bulk correlation length~in the b phase! while
U and W are positive constants.~We use a convention in
which the factor 1/kBT is included in the Hamiltonian.! The
parametert denotes the dimensionless deviation from t
wetting temperature for the planar substrate, i.e.,t.0 for T
,Tw andt50 for T5Tw . In Eq. ~2.1! l ` denotes the equi
librium thickness of the adsorbed layer on the planar s
strate that minimizes the potentialv~l ! so that
exp(2l ` /j)5(W/2U)t. Finally, because the wedge
widely open we have put sinw51 and written cotw5cosw
5l.

The mean-field profilel̄ (x) varies only in thex direction.
It satisfies the Euler-Lagrange equation@6#

S l̄ 8~x!5v8~ l̄ !, ~2.3!

and the boundary conditionsl̄ (6`)5l ` , l̄ 8(06)57l.
The solution of this equation is

x~ l̄ !56E
l̄

l 0 dl

A2$v~ l !2v~ l `!%/S
, ~2.4!

where the thickness of the mean-field profile at the cente
the wedge is denoted byl 0[ l̄ (0). After multiplying both
sides of Eq.~2.3! by l̄ (x) and integrating overx from 0 to`
one obtains v(l 0)2v(l `)5Sl2/2. With the help of
Young’s equation one can relatev(l `) to the contact angle
Q on the planar substrate via

2v~ l `!5SQ2/2. ~2.5!

From this we see thatv(l 0)5S(l22Q2)/2 while the filling
transition (l 0→`,l `→finite! takes place whenQ(T5Tw)
5l.

For small deviations,dl (x,y)5l (x,y)2 l̄ (x), from the
mean-field profilel̄ (x), the fluctuation Hamiltonian is

H f l@dl #5H@ l̄ 1dl #2H@ l̄ #

5E dxE d 1
2 @S~¹dl !21v9~ l̄ !~dl !2#,

~2.6!
03160
-

of

i.e., bilinear indl . An important feature of the critical filling
transition is the existence of atranslational mode, i.e., a
fluctuation of the interface that requires very small ene
~decreasing to 0 at the transition point!. This fluctuation
takes the formdl (x)5eu l̄ 8(x)u and the corresponding en
ergetic cost isH f l@dl #5e2lv8(l 0), which decreases to 0
when l 0→`.

The corresponding differential equation for the correlati
function G(r,r 8)5^dl (r )dl (r 8)& has, in mean-field ap-
proximation, the following form@12#:

@2SD r1v9~ l̄ !#G~r ,r 8!5d~r2r 8!. ~2.7!

However, the mean-field description fails in the case
the critical filling transition for short-ranged forces becau
Eq. ~2.7! implies strong anisotropy of fluctuations of the in
terface: specifically, the fluctuations along the wedge dive
much faster than across the wedge since the latter
bounded by the geometry of the substrate. As shown in@10#,
the mean-field predictions are valid only for power-la
forces of the typev(l );l 2p with p,4.

III. REDUCTION OF THE ORDER PARAMETER

An effectiveway to analyze the critical fluctuations o
l (x,y) near the filling transition point is to reduce the inte
facial description by looking only at the midpoint heig
l (y)5l (0,y) @10#. In order to derive the correspondin
Hamiltonian we proceed as follows: first we minimize th
Hamiltonian in Eq.~2.1! as in the mean-field method bu
now subject to the constraintl (0,y)5l (y) imposed inde-
pendently at each value ofy @13#. From the corresponding
Euler-Lagrange equation one obtains

x~ l ,y!56E
l

l ~y! dl 1

A2$v~ l 1!2v~ l `!%S
. ~3.1!

As a result, the one-dimensional HamiltonianH1@ l (y)#
5H@ l (x,y)#, valid for configurations given by this expres
sion, takes the form

H1@ l ~y!#

5E dyH S@ l 8~y!#2* l `

l ~y!dl 1AS„v~ l 1!2v~ l `!…/2

w„l ~y!…2v~ l `!

12E
l `

l ~ t !
dl 1@A2S$v~ l 1!2v~ l `!%2lS#J . ~3.2!

For short-range forces, see Eq.~2.2!, this effective Hamil-
tonian can be evaluated explicitly to yield
2-2
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H1@ l #5E dyH S@ l̄ 8~y!#2

Q
S l̄ 2j@12exp~2 l̄ /j!#

@12exp~2 l̄ /j!#2
D

12S~Q2l! l̄ 22SQj@12exp~2 l̄ /j!#J ,

~3.3!

where l̄ (y)5l (y)2l ` . For temperatures close to the fil
ing transition one hasl @j andl @l ` and Eq.~3.3! reduces
to the one-dimensional Hamiltonian proposed phenome
logically in @10#

H1@ l ~y!#'E dyFSl ~y!

Q
@ l 8~y!#212S~Q2l!l ~y!G .

~3.4!

This Hamiltonian has a relatively simple structure and
easy to renormalize. After introducing the rescaled variab
L andY via

Qy5~2S!21/2@~Q/l!21#23/4Y,

l 5~2S!21/2@~Q/l!21#21/4L, ~3.5!

H1 takes the parameter-free form

H1@L~Y!#5E dYFL~Y!

2
@L8~Y!#21L~Y!G . ~3.6!

Accordingly, the critical behavior of the mean midpoi
height ^l (y)& and the correlation lengthjy follow directly
from the rescaling aŝ l (y)&;(Q2l)21/4 and jy;(Q
2l)23/4. These values of the critical indices agree w
those obtained in@10#.

The one-dimensional system described by the Ham
tonian H1 in Eq. ~3.6! can be solved via a transfer-matr
method@10,15#. However, in this method the presence of t
factor L(Y) in front of @L8(Y)#2 is a source of some amb
guity when discretizing the problem and defining the m
sure that is then used to evaluate the relevant propag
@14#. In order to avoid such problems, it is convenient
introduce the new variableh[2L3/2/3 that ‘‘absorbs’’ the
‘‘dangerous’’ factorL(Y). Then the Hamiltonian takes th
form

H1@h~Y!#5E dY$@h8~Y!#2/21~3h/2!2/3%. ~3.7!

The corresponding propagator

V~h2 ,h1 ,Y!5E Dh exp~2H1@h#!uh~0!5h1

h~Y!5h2, ~3.8!

in which integration over all functionsh satisfying the
boundary conditionsh(0)5h1 andh(Y)5h2 is performed,
can be evaluated by solving—within the transfer matrix a
proach@15#—the equation
03160
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]V

]Y
5

]2V

2]h2
22~3h2/2!2/3V. ~3.9!

This equation must be supplemented by an appropr
boundary condition whenh250. The general form of such a
condition in originall variables, namely,

] l
2
3/2V5aV, ~3.10!

is similar to that found in@15# for two-dimensional~2D!
wetting. It follows from Eq.~3.10! that fora,0 edge effec-
tively attracts the interface and no filling is observed; t
thickness of theb-like layer remains microscopic. Thus w
assumea.0. Note thata22/3 is the range of the influence o
the edge effects. In new variables the parameterh is Q de-
pendent so one obtains

]h2 ln Vuh2505aQ5 3
2 ~2S!23/4@Q/l21#23/8a.

~3.11!

Thus we findaQ;(Q/l21)23/8 in the critical region and
the appropriate boundary condition isV(0,h1 ,Y)50.

The propagatorV(h2 ,h1 ,Y) can be expressed with th
aid of the normalized eigenfunctionscn(h) and eigenvalues
En of the equation

Encn52
]2cn

2]h2 1~3h/2!2/3cn . ~3.12!

Then one has

V~h2 ,h1 ,Y!5(
n

cn~h1!cn~h2!e2EnY. ~3.13!

The probability distribution of the midpoint height is give
by c0

2(h) and other statistical quantities can be expressed
the appropriate combinations of eigenfunctions.

IV. THE SHORT-DISTANCE CORRELATION FUNCTION

Obviously the above one-dimensional approximation c
not describe the full two-dimensional structure of the int
face. However, when one considers the correlation func
G(r 8,r 9), see Eq.~2.7!, then for distancesuy92y8u two
length scales turn out to be relevant. The one-dimensio
character of the filling transition is seen on scalesuy92y8u
;Sl 3/l as shown in the preceding section, see Eq.~3.5!,
while the two-dimensional structure becomes import
whenuy92y8u;l /l as one expects from mean-field theor
In the critical region these two scales are well separat
becauseSl 2@1.

Therefore, in order to analyze the short-distance beha
one can introducea conditional correlation function. This is
done as follows: We assume that for a certain value ofy, say
y0 ~for convenience we sety050!, the interface profile
l (x,y) is constrained byl (x,y050)5 l̄ (x), wherel̄ (x) is
described by Eq.~2.4! but with agivenvalue ofl 0 . The full
Hamiltonian~2.1! is then expanded in a Taylor series in th
variablef(x,y)5l (x,y)2l (x,0) up to terms of orderf2.
2-3
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In this way one obtains~ignoring a constant term!

H@f#522E dy$lS2A2S@v~ l 0!2v~ l `!#%f~0,y!

1 1
2 E dxE dy$S~¹f!21v9@ l̄ ~x!#f2%. ~4.1!

The first term on the right-hand side of Eq.~4.1! is small in
the critical region~i.e., for l 0→` andQ'l!. It is of order
2S(Q2l)f, which follows from Eq.~2.5! and the fact that
v(l 0)→0 for l 0→`. Thus for short distances~i.e., small
compared toSl 3/l! from the point at which the constrain
is imposed one may keep only the second term in Eq.~4.1!.
The resulting structure of the Hamiltonian implies that t
conditional correlation function

Gl 0
~r ,r 8!5^f~r !f~r 8!&u l ~x,0!5 l̄ ~x! , ~4.2!

obeys the differential equation

@2SD r1v9~ l̄ !#Gl 0
~r ,r 8!5d~r2r 8!. ~4.3!

Similarly, as in Eq.~3.13!, the conditional correlation func
tion can be expressed in terms of the normalized eigenfu
tions cq and eigenvaluesEq of the operator @2SD

1v9( l̄ )# as

Gl 0
~r ,r 8!5(

q

cq~r !cq~r 8!

Eq
. ~4.4!

In this approach one must analyze carefully the contribut
from any eigenvalues tending to 0 near the transition. O
expects that the eigenfunctions with the lowest eigenva
will have a structure similar toc05u l̄ 8(x)u, which itself
corresponds to the translational mode~although it does not
satisfy the appropriate boundary condition in the pres
case!. Thus we introduce the new variablescq5wqc0 . The
equation for thewq has the form

@Eq1SD#wq522@A2S$v~ l̄ !2v~ l `!%] 8]swq ,
~4.5!

where the prime denotes derivative with respect tol̄ . The
expression on the right-hand side of this equation is clos
0 for luxu,l 0 while for luxu approachingl 0 it quickly
becomes equal to22ASv9(l `)]xwq , because thenv( l̄ )
'v(l `)1v9(l `)( l̄ 2l `)2/2. We are interested only in
long-wave fluctuations such thatEq;S(l/l 0)2. If all terms
in this equation are to be of the same order of magnitude
luxu.l 0 , one should have]x ln wq;Eqjp /S;jpl2/l 0

2,
wherejp5@v9(l `)/S#21/2 is the correlation length for the
planar case. Note thatjp , which diverges at the critical wet
ting on the planar substrate, remains finite at the critical
ing transition.

The above considerations lead to the equations

2SD rGl 0
~r ,r 8!5d~r2r 8!, ~4.6!
03160
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]xGl 0
~r ,r 8!u uxu5l 0 /l50 ~4.7!

for the conditional correlation function forluxu,l 0 , i.e., for
the central ‘‘free’’ part of the interface. One also nee
boundary condition wheny8→`. Since there is long-range
order on this scale, i.e., forly;l 0 one should not expec
Gl 0

(r1 ,r2)→0 when r2→`. Instead, whenr2→` we as-

sumeGl 0
(r1 ,r2)→ f (r1),`, i.e., G remains finite. Using

the standard methods of conformal transformation~see the
Appendix! one obtains the solution

Gl 0
~r1 ,r2!52

1

4Sp
@ ln$e~Y12Y2!p/21e~Y22Y1!p/2

22 cos~X12X2!p/2%1 ln$e~Y12Y2!p/2

1e~Y22Y1!p/212 cos~X11X2!p/2%

2 ln$e~Y11Y2!p1122e~Y11Y2!p/2 cos~X1

2X2!p/2%2 ln$e~Y11Y2!p1112e~Y11Y2!p/2

3cos~X11X2!p/2%1p~Y11Y2!#, ~4.8!

whereRi[(Xi ,Yi)5lr i /l 0 , i 51,2. We note that whenr2
→` one hasGl 0

(r1 ,r2)→ly1 /Sl 0 .

V. THE SHORT-DISTANCE DISPERSION

For short distances the two-pointl distribution may be
calculated by constraining one of the points and using
same approximation as in the previous section in which o
bilinear terms in the Hamiltonian fluctuations were tak
into account. Thus the probability has the form of Gaussi
regularized delta function@16#

p~ l 1 ,r1 ;l 2 ,r2!'p~ l 0!
exp@2~ l 22l 1!2/2s~r1 ,r2 ,l 0!#

@2ps~r1 ,r2 ,l 0!#1/2 ,

~5.1!

wherel 0 is the mean height of the interface above the ed
of the wedge defined by

l 05@ l 11l 21l~ ux1u1ux2u!#/2'l 11lux1u'l 21lux2u.
~5.2!

We use the conditional correlation functionGl 0
to obtain

an expression for the dispersions, namely,

s5^~ l 22l 1!2&5Gl 0
~r1 ,r1!22Gl 0

~r1 ,r2!1Gl 0
~r2 ,r2!.

~5.3!

The standard problem that one encounters at this poin
thatGl 0

(r1 ,r2) diverges forr2→r1 @12,17#. This divergence

can be removed by regularizing the functionGl 0
(r1 ,r2),

e.g., by adding to the Hamiltonian given in Eq.~4.1! a term
k2(Df)2/2, wherek is a dimensionless parameter. This pr
cedure yields the equation
2-4
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@k2D r 1

2 2SD r 1
#Gl 0

~k!5d~r22r1!, ~5.4!

for the regularized functionGl 0

(k)(r1 ,r2). For small k the

solution of this equation has the form:

Gl 0

~k!~r1 ,r2!5Gl 0
~r1 ,r2!2K0~S1/2ur22r1u/k!/2pS,

~5.5!

where K0 is the modified Bessel function. In this way th
short-distance divergence is removed and one finds

Gl 0

~k!~r1 ,r1!5 lim
r2→r1

FGl 0
~r1 ,r2!1

g1 ln~S1/2ur22r1u/2k!

2pS G ,
~5.6!

whereg is the Euler constant. Now the expression for t
dispersions(r1 ,r2 ,l 0) in Eq. ~5.3! can be written down
explicitly. We are interested in the situation in which th
constraint affects only the mean height of the interface

FIG. 2. The dimensionless dispersions entering Eq.~5.3! as
function of X1 and Y for X250 and 0.5, respectively. Note tha
Xi5(l/l 0)xi , i 51,2, and analogous forY.
03160
d

thus we considery1 , y2@l 0 /l and ur12r2u@k. Then we
obtain

s~r1 ,r2 ,l 0!5
1

2Sp
@2 ln~ l 0S1/2/kpl!12g

2 ln$cos~X1p/2!%2 ln$cos~X2p/2!%

1 ln cosh$~Y12Y2!p/2%2cos$~X1

2X2!p/2%1 ln cosh$~Y12Y2!p/2%

1cos$~X11X2!p/2%#, ~5.7!

whereXi andYi are defined below Eq.~4.8!. The variation of
s with r1 at fixedX2 is shown on Fig. 2. We see that in th
limit s(r1 ,r2 ,l 0) depends—in addition toX1 andX2—only
on the distanceY5Y22Y1 . For fixed values ofX1 andX2 it
is an increasing function ofuYu: see Fig. 2. Thus the relativ
fluctuations of the interface position at points distant alo
the edge of the wedge become large.

It is interesting to observe that foruy12y2u@l 0 /l one
gets

s~r1 ,r2 ,l 0!'uy12y2ul~Sl 0!21/2. ~5.8!

This result agrees with the prediction of the one-dimensio
model that is valid on the scales satisfyingSl 0

3@luy1

2y2u; it can be derived with the help of Eq.~3.9!. Thus the
results obtained via the conditional correlation function
Secs. IV and V are consistent with those stemming from
transfer-matrix analysis of the 1D model in Sec. III.

VI. CONCLUSIONS

A reduced description of a fluctuating interface spann
a wedge-shaped substrate has been derived in an ex
way. This reduced description is based on the o
dimensional Hamiltonian~3.4! @10# and our derivation of this
Hamiltonian makes clear the physical assumptions that
derlie it. Although the effective one-dimensional Ham
tonian allows one to find the relevant critical exponents
cannot describe the full two-dimensional structure of the
terface. We have proposed a method of supplementing
one-dimensional picture by local, two-dimensional co
strained fluctuations that can be analyzed within mean-fi
theory and described by a conditional correlation functio
see Eq.~4.2! These fluctuations are found not to be diverge
at the filling transition. The method developed can be use
calculate various other geometry-dependent statistical
servables. Explicitly, it predicts the behavior of the disp
sion of the conditional correlation function that agrees w
the predictions of the one-dimensional model.
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APPENDIX

In this appendix we sketch the successive steps in
method of conformal transformation that lead to the solut
of Eqs.~4.6! and ~4.7!.

After introducing the complex variablesr1,25(x1,2;y1,2),
z1,25x1,21 iy1,2, Eq. ~4.6! can be rewritten as

24S]z1
] z̄1

Gl 0
~z1 ,z2!5d~z12z2!, ~A1!

together with the boundary condition@Eq. ~4.7!#

i @dzc]z2dz̄c] z̄#Gl 0
~z,z2!50, ~A2!

wherezc denotes the contour on which the boundary con
tion is given. These equations are invariant with respec
the conformal transformations. The solution of Eq.~A1!
valid for the whole plane has the form

G`~z1 ,z2!52
1

4Sp
@ ln~z12z2!1 ln~ z̄12 z̄2!#. ~A3!
in
tio

i-
te

03160
e
n

i-
to

The solution valid for the semiplaneRz.0 with a Neu-
mann boundary condition onRz50 may be found with the
help of the method of images and has the form

GRz.0~z1 ,z2!5G`~z1 ,z2!1G`~z1 ,z̄2!. ~A4!

After introducing the conformal transformatio
Z°e2 ipZ/2 for dimensionless variablesZ5zl/l and R
5rl/l , one obtains

G~ l !~Z1 ,Z2!5GRZ.0~eipZ1/2,eipZ2/2!, ~A5!

with the Neumann condition atX561. Finally, taking into
account the constraint imposed on the interface aty50 and
using the freedom to add to the right-hand side of Eq.~A4!
the solutions of Laplace’s equation lead to the solution of E
~4.6! given in Eq.~4.8!.
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