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Interfacial fluctuations near the critical filling transition
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We advance a method to describe the short-distance fluctuations of an interface spanning a wedge-shaped
substrate near the critical filling transition. Two different length scales determined by the average distance of
the interface from the substrate at the wedge center can be identified. On one length scale, the one-dimensional
approximation of A. O. Parry, C. Rascon, and A. J. WgBHys. Rev. Lett85, 345(2000], which allows one
to determine the interfacial critical exponents, is extracted from the full description. On the other scale, the
short-distance fluctuations are analyzed by mean-field theory.
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[. INTRODUCTION dimensional interface close to the filling transition in the
system with short-ranged forcef6]. We expect that

The analysis of uniform physical systems usually involvesgeometry-dependent effects will be important at short dis-
some reduction in the description of the state of the systentances. Since the midpoint height does not fluctuate too
Likewise for inhomogeneous systems consisting of two comuch on the short length scale, the idea is to fix this height at
existing bulk phases separated by an interface fluctuating ifome arbitrarily chosen point and to assume a mean-field
the presence of a substrate. Certain properties of such syQIIOf"e of the interface in the vicinity of this chosen point
tems, e.g., those related to adsorption phenomena, can k&long thex direction. We use a mean-field approximation
described conveniently with the help of a single mesoscopito describe the “relative” fluctuations around the fixed
variable, namely, the distance of the interface from the subpoint. The two-point height distribution function for neigh-
strate. boring points consists of two parts: the one-point distribution

In this paper we consider such a system. The substrate h&grresponding to one of the pointsr their average height
the form of an infinite wedge extending along thdirection ~ and the conditional probability distribution in the form of a
with the opening angle see Fig. 1. The quasibulk phase Gaussian with a position-dependent dispersion. This disper-
adsorbed on the substrate is denogwhile the phase far sion does not diverge at the filling transition and may thus
above the substrate is thephase. The surface of the sub- turn out to be useful when geometry-dependent observables
strate is specified by=|x|cote while /(x,y) describes the are considered. The mean-field description then becomes le-
distance of thea-3 interface from the substrate measuredgditimate because by fixing the position of the interface and
parallel to thez axis. It was pointed out recent[yl—7] that ~ looking at the conditional distribution, one forces the local
this system may undergo a critical transition in which thefluctuations to be small and so the system is locally outside
distance of the central part of the interfgedove the edge of the critical region.
the wedgég becomes indefinitely large while the asymptotic
parts of the interface corresponding|td—  remain close
to the substrate. This interfacial transition is called the filling Il. MEAN-FIELD DESCRIPTION

transition to distinguish it from the wetting transition that oy the interfacial Hamiltonian in the case of a widely

may take place on planar substraf@s9]. Thermodynami-  onen wedge (cap<1) we adopt the standard forf6,10]
cally, the filling transition point is located at bul3 coex-

istence and the filling temperatuf@rhich depends on the
wedge opening angle) is denoted byT, with T,<T,,
whereT,, is the wetting temperature on the planar substrate.

In their recent paper Parry, Rascon, and Wptd] used a
transfer-matrix method to evaluate—among other features— o y
the values of the critical indices associated with the interfa-
cial behavior near the filling transition. For this purpose a
further step in the reduction of the description was made.
The two-dimensional interface(x,y) was replaced by the
one-dimensional midpoint ling(y)=/(0yy) (see Fig. 1for
which an appropriate Hamiltonian was proposed.

If, however, one is interested in the full two-dimensional
structure of the fluctuating interface near the critical filling
transition, i.e., also in the short-distance behavior that is not
included in the reduced description then—at least in
principle—one should go beyond a mean-field analysis.

In this paper we advance a method to describe the two- FIG. 1. The wedge geometry and the fluctuatiag interface.

H[/"]=f dxf dy{S[V(/+NXD1Y2+ 0(/) — o(/.)}

xT
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i.e., bilinear ind7. An important feature of the critical filling
:j de dy[S(VA)22+ ()~ (/)] transition is the existence of @anslational modei.e., a
fluctuation of the interface that requires very small energy
(decreasing to 0 at the transition pginfThis fluctuation

takes the forms/(x)=¢|/’(x)| and the corresponding en-

_ _ ergetic cost isH[ 8/ ]= €\ w'(/,), which decreases to 0
where/(x,y) (Fig. 1) denotes the thickness of the adsorbedwhen /,— .

f-like layer measured in the vertical direction whieis the The corresponding differential equation for the correlation

a-B interfacial tension. The interfacial pinning potential fynction G(r,r "Y=(8/(r)8/(r')) has, in mean-field ap-
(/) is taken to be that appropriate to critical wetting in the proximation, the following forn{12]:

planar case ¢= w/2). For short-range forces, as considered
in this paper, it has the forr6—11]

—ZEAJ dy[Z(0y)—7"], (2.1

(/)= —Wtexp(—/1§)+U exp —2/18), (2.2 [Z2ata"NJ6Mr)=or=r). 27

where¢ is the bulk correlation lengtfin the 8 phasg while However, the mean-field description fails in the case of

U ‘T"”d W are posnlve_cqnstantsv_\/e use a c_onvgnnon N the critical filling transition for short-ranged forces because
which the factor HsT is mqluded_ in the Ham.|ltqn|am.The Eq. (2.7) implies strong anisotropy of fluctuations of the in-
parametert denotes the dimensionless deviation from theg s - specifically, the fluctuations along the wedge diverge
wetting temperature for the planar substrate, t2.0 for T~ ,ch faster than across the wedge since the latter are

<T, andt=0 for T=T,,. In Eq.(2.1) /.. denotes the equi- 1, nded by the geometry of the substrate. As showiaOh
librium thickness of the adsorbed layer on the planar subg,o mean-field predictions are valid only for power-law
strate that minimizes the potentiake(/) so that ¢,.ces of the typao(/)~ /P with p<4
exp(—/.1&)=(W/2U)t. Finally, because the wedge is o '

widely open we have put sip=1 and written cotp=cose

=\ _ IIl. REDUCTION OF THE ORDER PARAMETER
The mean-field profile’(x) varies only in thex direction. _ N )
It satisfies the Euler-Lagrange equati@ An effectiveway to analyze the critical fluctuations of
/(Xx,y) near the filling transition point is to reduce the inter-
S/ (0 =0'(/), 2.3 facial description by looking only at the midpoint height

Z(y)=/(0y) [10]. In order to derive the corresponding
Hamiltonian we proceed as follows: first we minimize the
Hamiltonian in Eqg.(2.1) as in the mean-field method but
now subject to the constraint(0,y)=/(y) imposed inde-
pendently at each value gf[13]. From the corresponding
(2.4) Euler-Lagrange equation one obtains

and the boundary conditions(+ =)=/, /' (0.)=F\.
The solution of this equation is
d/

7 ﬁ"
X()== I N2{w()—o(/ IS

where the thickness of the mean-field profile at the center of /(y) d/y

the wedge is denoted by,=/(0). After multiplying both X(Zy)== f/ o/ ) —wl/ )
sides of Eq(2.3) by /(x) and integrating ovex from 0 toc ! 7

one obtains w(/) — w(/.,)=3\%/2. With the help of

Young's equation one can relaig/".,) to the contact angle As a result, the one-dimensional Hamiltonidiy[/(y)]

on the planar substrate via =H[/(x,y)], valid for configurations given by this expres-
sion, takes the form

(3.9

—w(/,)=2072]2. (2.5

From this we see thai(/ o) =3 (\*—02)/2 while the filling  H,[/(y)]

transition ¢o— %,/ . —finite) takes place whe®(T=T,) ‘

=\. S WP 1 E ()~ o(£2)2
For small deviationss/(x,y) =/(x,y) — 7 (x), from the :f dy w(Z(y)— (/)

mean-field profile(x), the fluctuation Hamiltonian is

/(1)

/ %

:fdxf d3[2(V8/) %+ w"(/)(8/)2],
For short-range forces, see EHQ.2), this effective Hamil-
(2.6)  tonian can be evaluated explicitly to yield
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SI7WP[ /—d1-exp—/1 N_ IV _
Hl[/]:fdy[ [~ (y)] & eXF(f 8] N " 2072 (37,12)2V. (3.9
[1-exp(—/18)]?

This equation must be supplemented by an appropriate
T B = boundary condition whemy,=0. The general form of such a
+22(0-0\)/— 22041 exq //5)]}’ condition in original/” variables, namely,
(3.3 &/g/N: aVv, (3.10

where/ (y)=/(y)—/ ... For temperatures close to the fill- is similar to that found in[15] for two-dimensional(2D)

ing transition one hag’> ¢ and/ >/, and Eq.(3.3) reduces  wetting. It follows from Eq.(3.10 that fora<0 edge effec-

to the one-dimensional Hamiltonian proposed phenomendively attracts the interface and no filling is observed; the
logically in [10] thickness of theB-like layer remains microscopic. Thus we

s/ assume>0. Note thata~?3is the range of the influence of
, y) ., 2 the edge effects. In new variables the parametés © de-
Hl[/(y)]~J' dy[ [7" NI +22(0 =N (y) |- pendent so one obtains
(3.9
an,InV|7,=0=ae=3(23) 3 [0/N—1] %,
This Hamiltonian has a relatively simple structure and is (3.11
easy to renormalize. After introducing the rescaled variables i s . )
L andY via Thus we findag~(®/N—1) in the critical region and
the appropriate boundary condition\i§0,7,,Y)=0.
Oy=(23)"Yq(O/N)—1]" %, The propagatoV(7,,7,,Y) can be expressed with the
aid of the normalized eigenfunctions,( ) and eigenvalues
/=(23) Y (@/N)— 1] Y4, (3.5  E, of the equation
. 9°
H, takes the parameter-free form E, = — 2(;:; +(37/2)2%, . (3.12

L(Y) ’
Hl[L(Y)]:f dY|——[L'(MI*+L(Y)|. (3-8 Then one has

Accordingly, the critical behavior of the mean midpoint vV Y)= e EnY 31

height(/(y)) and the correlation lengtt, follow directly (72,71.Y) ; Ynlm2) ¥ 72) (3.13

from the rescaling ag/(y))~(®—\)""* and &~(0©

—\)~%¥% These values of the critical indices agree with The probability distribution of the midpoint height is given

those obtained if10]. by ¥3(7) an_d other stgtist_ical quaqtities can be expressed by
The one-dimensional system described by the Hamilthe appropriate combinations of eigenfunctions.

tonian H; in Eg. (3.6) can be solved via a transfer-matrix

method[10,15. However, in this method the presence of the |v. THE SHORT-DISTANCE CORRELATION FUNCTION

factor L(Y) in front of [L’(Y)]? is a source of some ambi- ) ) ) o

guity when discretizing the problem and defining the mea- Obviously the above one-dimensional approximation can-

sure that is then used to evaluate the relevant propagat&©t describe the full two-dimensional structure of the inter-

[14]. In order to avoid such problems, it is convenient toface. However, when one considers the correlation function

introduce the new variabley=2L%2%3 that “absorbs” the G(r'.r"), see Eq.(2.7), then for distancedy”—y'| two

“dangerous” factorL(Y). Then the Hamiltonian takes the !e€ngth scales turn out to be relevant. The one-dimensional
form character of the filling transition is seen on scglgs-y’|

~3/3/\ as shown in the preceding section, see B),
while the two-dimensional structure becomes important
Hal ﬁ(Y)]ZJ dY{[7'(V)]%2+(3%/2*®. (3.7  when|y"—y’|~//\ as one expects from mean-field theory.
In the critical region these two scales are well separated
The corresponding propagator becausex./*>1.
Therefore, in order to analyze the short-distance behavior
T one can introduce conditional correlation functionThis is
V(72,71,Y)= f Dypexp—Hil 7))l }o-,% (38  done as follows: We assume that for a certain valug, shy
yo (for convenience we sey,=0), the interface profile
in which integration over all functions; satisfying the /(x,y) is constrained by’(x,y,=0)=/(x), where/(x) is
boundary conditions(0)= 7, and n(Y)= 7, is performed, described by Eq(2.4) but with agivenvalue of/. The full
can be evaluated by solving—within the transfer matrix ap-Hamiltonian(2.1) is then expanded in a Taylor series in the
proach[15]—the equation variable ¢(x,y) =/(x,y) — 7 (x,0) up to terms of ordee?.
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In this way one obtaingignoring a constant term axG/o(r'r,)MX\:/o/A:O 4.7
H[ ¢]= _Zf dyINS — V23 [w(/ o) — (7)1} (0y) for the condiF‘ionaI”correIation function for|x| </, i.e., for
the central “free” part of the interface. One also needs

o boundary condition wheg’ —o. Since there is long-range

+%f dxf dy{>(Ve)?+ w"[/(X)]¢?. (4.1)  order on this scale, i.e., fory~/ one should not expect
G, (r1,r2)—0 whenr,—o. Instead, wherm,— we as-

The first term on the right-hand side of B¢.1) is small in ~ sumeG, (ry,rz)—f(ry) <, ie., G remains finite. Using

the critical region(i.e., for /p—o~ and®~\). It is of order  the standard methods of conformal transformatisee the

23, (0 —\) ¢, which follows from Eq.(2.5) and the fact that AppendiX one obtains the solution

w(/y)—0 for /y—o. Thus for short distance@.e., small

compared ta&/>/\) from the point at which the constraint

J ; 1

is imposed one may keep only the second term in(Ed). G, (rq,ry)=——<—[In{eY1 Y2724 g(Y2=Yy)7l2

The resulting structure of the Hamiltonian implies that the ° 4% m

conditional correlation function —2 COg Xy — X,) 2} + Infe( Y1~ Y2712
G, (rr")=(d(N o' N /x0 =710 (4.2) +eY2m YU ™24 2 cog X, + X,) w/2}

obeys the differential equation —In{e"1*Y2)7+ 1 - 2eY1* V272 cog X,

— _ _ (Y1+Yo)m (Y1+Yo)m/2
[~3A 4" ()]G, (1r)=8(—1"). (43 Xo)ml2} = Infel T 1+ 2€ T

XcogXy+ X)) 2+ (Y, +Y0)], (4.8
Similarly, as in Eq.(3.13), the conditional correlation func-

tion can be expressed in terms of the normalized eigenfunsvhereRi=(X;,Y;)=\r;//, i=1,2. We note that when,
tions i, and eigenvaluesE, of the operator[-XA  — one hasG, (ri,r;)—\y1/2/,.

+w"(/)] as
V. THE SHORT-DISTANCE DISPERSION

G/O(r,r’)=2 M

E (4.4 For short distances the two-poirt distribution may be
q q

calculated by constraining one of the points and using the
ame approximation as in the previous section in which only
ilinear terms in the Hamiltonian fluctuations were taken
|§to account. Thus the probability has the form of Gaussian-
regularized delta functiofil6]

In this approach one must analyze carefully the contributiog
from any eigenvalues tending to O near the transition. On
expects that the eigenfunctions with the lowest eigenvalue

will have a structure similar tayy=|/"(x)|, which itself
corresponds to the translational mo@dthough it does not
i i ition i exfl — (/2= 7/ 1)%20(r1,15,/0)]
satisfy the appropriate boundary condition in the presenb(/ F1:/ 20 T2)~p(Zo) 2771 11272270
casg. Thus we introduce the new variablgg= ¢qto. The 22 0 [270(Ty .15,/ o) ]? ’
equation for thep, has the form (5.9

- N () / where/, is the mean height of the interface above the edge
[Eqt2A]eq 2[ V25 {w(/) ~ o(/-)}] Is¢q; of the wedge defined by

where the prime denotes derivative with respect’toThe — /o=[/1+/ 2+ N(|Xq| +|X2[)1/2= 7 1+ N|Xq| =7 2+ \|Xy].

expression on the right-hand side of this equation is close to (5.2
0 for \|x|</, while for \|x| approaching/ it quickly . . . _
becomes equal to-2ySw"(7.)dyeq, because them (/) We use the conditional correlation funcuﬁs‘y0 to obtain

~w(/ ) +w"(/ )/~ )%2. We are interested only in an expression for the dispersion namely,
long-wave fluctuations such ththfvE()\//O)z. If all terms
in this equation are to be of the same order of magnitude forr=<(/2—/l)2>=G/0(r1 ,rl)—ZG/O(r1 ,r2)+G/0(r2 o).
N|X|>7,, one should havel,In ¢,~Eq¢, /S~ &N/, 5.3
whereé, =["(/.)/2] Y2 is the correlation length for the '
planar case. Note that. , which diverges at the critical wet- The standard problem that one encounters at this point is
ting on the planar substrate, remains finite at the critical fill-thatG, (r1.r,) diverges for,—r, [12,17]. This divergence
ing transition. can be removed by regularizing the functi@y (r1,r,),

The above considerations lead to the equations e_zg_’ byzadding to the Hamiltonian given in Eg-.1) a term

k(A ¢)°12, wherex is a dimensionless parameter. This pro-
“2AG,(rr)=6(r=r), (4.6 cegjuf;)yields the equation P P
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thus we considey,, y,>//\ and|r;—r,/>«. Then we
obtain

1
o(ry,f,/ )= 5512 In(/ oS3 kmh)+ 27y

—In{cog X;7/2)} —In{cog X, 7/2)}
+IncosH(Y,—Y,)m/2} —cog (X,
—Xo) w2} +IncosH(Y,—Y,) m/2}
+cog(Xq+Xy)7/2}], (5.7

whereX; andY; are defined below Eq4.8). The variation of
o with ry at fixed X, is shown on Fig. 2. We see that in this
limit o(rq,r,,/ ) depends—in addition t&¥; andX,—only
on the distanc&=Y,—Y;. For fixed values oK; andX, it
is an increasing function di¥|: see Fig. 2. Thus the relative
fluctuations of the interface position at points distant along
the edge of the wedge become large.

It is interesting to observe that fdy,—y,|>//\ one
gets

o(ry,r2.70)=~|y1—Y2INE o) ~H2. (5.9

This result agrees with the prediction of the one-dimensional
model that is valid on the scales satisfyiri;/8>)\|yl
—Y,|; it can be derived with the help of E¢3.9). Thus the
results obtained via the conditional correlation function in
FIG. 2. The dimensionless dispersionentering Eq.(5.3 as  Secs. IV and V are consistent with those stemming from the

function of X, andY for X,=0 and 0.5, respectively. Note that transfer-matrix analysis of the 1D model in Sec. IlI.
Xi=(N/g)%;, i=1,2, and analogous fo¥.

VI. CONCLUSIONS

202 _ (k) — _
L« Afl EAfl]G/o Arz=r1), (54 A reduced description of a fluctuating interface spanning

a wedge-shaped substrate has been derived in an explicit
. _ way. This reduced description is based on the one-
for the regularized functiorG(r;,r;). For small« the  dimensional Hamiltonia(3.4) [10] and our derivation of this
solution of this equation has the form: Hamiltonian makes clear the physical assumptions that un-
derlie it. Although the effective one-dimensional Hamil-
tonian allows one to find the relevant critical exponents, it
GUW(ry,r)=G, (r1.r)—Ko(S¥r,—r14|/k)273, cannot describe the full two-dimensional structure of the in-
foli ANz R B2 ’ terface. We h d a method of supplementing th
(5.5) erface. We have proposed a method of supplementing the
one-dimensional picture by local, two-dimensional con-
strained fluctuations that can be analyzed within mean-field
theory and described by a conditional correlation function:
see Eq(4.2) These fluctuations are found not to be divergent
at the filling transition. The method developed can be used to
calculate various other geometry-dependent statistical ob-
172 servables. Explicitly, it predicts the behavior of the disper-
. y+In(EHr,—r4|/2x) . ” ; . )
GU(ry,r)=lim |G, (rq,r,)+ sion of the conditional correlation function that agrees with
/0 1.'1 /0 1.2 277,2 ’ th .. i .
Fy—ry e predictions of the one-dimensional model.
(5.6

where K, is the modified Bessel function. In this way the
short-distance divergence is removed and one finds
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APPENDIX The solution valid for the semiplart8z>0 with a Neu-

In this appendix we sketch the successive steps in thrﬁneallgnof ?huengqaé}{/hggngf't;;ggzz;od rr?:z t?]if%l:;d with the

method of conformal transformation that lead to the solution
of Egs.(4.6) and(4.7).

After introducing the complex variables ;= (X1 2;Y1.2), Gorr=0(Z1,22) = Guu(21,2) + Go(21, 7). (A4)
Zy,=X1,t1y12, EQ.(4.6) can be rewritten as

—4%0,,07,G, (21,2))=8(2,-2,), (A1) After introducing the conformal transformation
_ N Z—e ™2 for dimensionless variableZ=z\// and R
together with the boundary conditig&q. (4.7)] =r\//, one obtains
i[dzd,~dz7;1G, (2,2,) =0, (A2) . '
G(/)(Zl IZZ) — sz>0(el 11'21/2, el 7722/2)’ (AS)

wherez. denotes the contour on which the boundary condi-

tion is given. These equations are invariant with respect to

the conformal transformations. The solution of HAl)  with the Neumann condition a= = 1. Finally, taking into

valid for the whole plane has the form account the constraint imposed on the interfacg=a0 and
using the freedom to add to the right-hand side of &dt)

_ 1 — the solutions of Laplace’s equation lead to the solution of Eq.
Cu(21,22) = = g5 lINZ=Z) FINZ1=22)). (A3) 4 5" iven in Eq.(4.9).
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